Rabu, 04 Februari 2009

PEMANASAN GLOBAL




Pemanasan global (global warming) pada dasarnya merupakan fenomena peningkatan temperatur global dari tahun ke tahun karena terjadinya efek rumah kaca (greenhouse effect) yang disebabkan oleh meningkatnya emisi gas-gas seperti karbondioksida (CO2), metana (CH4), dinitrooksida (N2O) dan CFC sehingga energi matahari terperangkap dalam atmosfer bumi. Berbagai literatur menunjukkan kenaikan temperatur global termasuk Indonesia yang terjadi pada kisaran 1,5–40 Celcius pada akhir abad 21.


Suhu rata-rata global pada permukaan Bumi telah meningkat 0.74 ± 0.18 °C (1.33 ± 0.32 °F) selama seratus tahun terakhir. Intergovernmental Panel on Climate Change (IPCC) menyimpulkan bahwa, "sebagian besar peningkatan suhu rata-rata global sejak pertengahan abad ke-20 kemungkinan besar disebabkan oleh meningkatnya konsentrasi gas-gas rumah kaca akibat aktivitas manusia" melalui efek rumah kaca. Kesimpulan dasar ini telah dikemukakan oleh setidaknya 30 badan ilmiah dan akademik, termasuk semua akademi sains nasional dari negara-negara G8. Akan tetapi, masih terdapat beberapa ilmuwan yang tidak setuju dengan beberapa kesimpulan yang dikemukakan IPCC tersebut. Menurut laporan Inter Govermental on Climate Change (Panel antar pemerintah tentang perubahan iklim-IPCC) sebelas dari 12 tahun terakhir merupakan tahun-tahun terhangat global sejak 1850. Dalam laporan yang dikeluarkan IPCC berjudul "Climate Change Impacts, Adaptation dan Vulnerability" disebutkan bahwa di Indonesia telah terjadi kenaikan suhu rata-rata antara 0.2-1 derajat Celcius per tahun berdasarkan data IPCC antara tahun 1970-2000.

Hal ini nyata terasa bukan hanya di kota-kota metropolitan di Indonesia tetapi juga di daerah tempat tinggal kami di Banjarbaru. Berdasarkan data kami di Stasiun Klimatologi Banjarbaru terjadi trend kenaikan suhu rata-rata bulanan mendekati 1 derajat Celcius, data tersebut diambil sejak tahun 1977 hingga 2006. Dampak yang paling dirasakan di daerah Kalimantan Selatan adalah pergeseran awal musim hujan dan kemarau hingga 4-6 dasarian tapi hal ini hanya terjadi di beberapa wilayah tertentu saja tidak terjadi di seluruh Kalimantan Selatan. Hal ini jelas berdampak kepada semakin sulitnya memberi peringatan dini kepada masyarakat terutama akan datangnya bencana alam, gagal panen, munculnya hama penyakit baru, musim hujan dan kemarau dan sebagainya.

Dampak Perubahan Iklim Global

Perubahan iklim yang diprakirakan akan menyertai pemanasan global adalah sebagai berikut:
  1. Mencairnya es di kutub sehingga permukaan air laut naik
  2. Air laut naik, maka akan menenggelamkan pulau dan menghalangi mengalirnya air sungai ke laut yang menimbulkan banjir di dataran rendah seperti pantai utara Pulau Jawa, dataran rendah Sumatera bagian timur, Kalimantan Selatan dan lain-lain.
  3. Hal yang paling mencemaskan adalah berubahnya iklim sehingga berdampak buruk pada pola pertanian di Indonesia yang mengandalkan makanan pokok beras pada pertanian sawah yang bergantung pada musim hujan. Suhu bumi yang panas menyebabkan mengeringnya air permukaan sehingga air menjadi langka. Ini memukul pola pertanian berbasis air.
  4. Meningkatnya resiko kebakaran hutan.
Terjadinya bencana alam dan kerugian bagi masyarakat Kalimantan Selatan seharusnya menjadi pelajaran bagi kita. Silih berganti peristiwa banjir kita alami. Peringatan Allah tentang kerusakan di permukaan bumi, telah tercantum dalam Al Quran pada surat Ar-Rum (30): 41 yang terjemahnya: "Telah tampak kerusakan di darat dan di laut disebabkan oleh perbuatan tangan manusia, supaya Allah merasakan kepada mereka sebagian dari (akibat) perbuatan mereka agar mereka kembali (ke jalan yang benar)."

Efek rumah kaca

Segala sumber energi yang terdapat di Bumi berasal dari Matahari. Sebagian besar energi tersebut berbentuk radiasi gelombang pendek, termasuk cahaya tampak. Ketika energi ini tiba permukaan Bumi, ia berubah dari cahaya menjadi panas yang menghangatkan Bumi. Permukaan Bumi, akan menyerap sebagian panas dan memantulkan kembali sisanya. Sebagian dari panas ini berwujud radiasi infra merah gelombang panjang ke angkasa luar. Namun sebagian panas tetap terperangkap di atmosfer bumi akibat menumpuknya jumlah gas rumah kaca antara lain uap air, karbon dioksida, dan metana yang menjadi perangkap gelombang radiasi ini. Gas-gas ini menyerap dan memantulkan kembali radiasi gelombang yang dipancarkan Bumi dan akibatnya panas tersebut akan tersimpan di permukaan Bumi. Keadaan ini terjadi terus menerus sehingga mengakibatkan suhu rata-rata tahunan bumi terus meningkat.


Gas-gas tersebut berfungsi sebagaimana gas dalam rumah kaca. Dengan semakin meningkatnya konsentrasi gas-gas ini di atmosfer, semakin banyak panas yang terperangkap di bawahnya.

Efek rumah kaca ini sangat dibutuhkan oleh segala makhluk hidup yang ada di bumi, karena tanpanya, planet ini akan menjadi sangat dingin. Dengan temperatur rata-rata sebesar 15 °C (59 °F), bumi sebenarnya telah lebih panas 33 °C (59 °F) dari temperaturnya semula, jika tidak ada efek rumah kaca suhu bumi hanya -18 °C sehingga es akan menutupi seluruh permukaan Bumi. Akan tetapi sebaliknya, apabila gas-gas tersebut telah berlebihan di atmosfer, akan mengakibatkan pemanasan global.

Untuk mencegah dan mengurangi emisi gas karbondioksida dan efek rumah kaca mendorong lahirnya PROTOKOL KYOTO. Dinegosiasikan di Kyoto Jepang pada Desember 1997, dibuka untuk penandatanganan 16 Maret 1998 dan ditutup pada 15 Maret 1999. Persetujuan ini mulai berlaku pada tanggal 16 Pebruari 2005, setelah ratifikasi resmi yang dilakukan Rusia pada 18 November 2004.

Hingga 23 Oktober 2007 sudah 179 negara yang meratifikasi PROTOKOL KYOTO tersebut, Ada empat negara yang telah menandatangani namun belum meratifikasi protokol Kyoto tersebut yaitu, Australia (tidak berminat meratifikasi), Monako, Amerika Serikat yang merupakan pengeluar terbesar gas rumah kaca juga tidak berminat untuk meratifikasinya, sisanya Kazakstan. Tetapi setelah Australia meratifikasinya menjelang konferensi perubahan iklim di Bali, maka tinggal Amerika Serikat sendiri sebagai negara industri besar yang belum meratifikasinya. Negara lain yang belum memberikan reaksi adalah Afghanistan, Andorra, Brunei, Rep. Afrika Tengah, Chad, Komoro Island, Irak, Taiwan, Republik Demokratik Arab Sahrawi, San Marino, Somalia, Tajikistan, Timor Leste, Tonga, Turki, Vatikan, dan Zimbabwe.

Sumber:

http://geo.ugm.ac.id/archives/28
http://id.wikipedia.org/wiki/Pemanasan_global
http://independen69.wordpress.com/2007/12/03/pemanasan-global-global-warming/

Selasa, 03 Februari 2009

KOMPOSISI DAN STRUKTUR ATMOSFER BUMI

Atmosfer berasal dari dua kata Yunani yaitu atmos berarti uap dan sphaira berarti bulatan, jadi atmosfer adalah lapisan gas yang menyelubungi bulatan bumi. Atmosfer bumi mempunyai ketebalan sekitar 1000 km yang dibagi menjadi lapisan-lapisan berdasarkan profil temperatur, komposisi atmosfer, sifat radioelektrik dan lain-lain. Karena sebaran panas tidak sama di dalam atmosfer, maka terjadi gejala-gejala cuaca yaitu dari angin lemah sampai sangat kencang di dalam badai atau siklon, dari cuaca cerah, cuaca berawan sampai hujan deras (shower). Kajian tentang deskripsi dan pemahaman fenomena atmosfer disebut Sains Atmosfer yang secara tradisi dibagi menjadi Meteorologi dan Klimatologi.

Berbagai pertimbangan yang menyebabkan ilmuwan tertarik mengkaji atmosfer bumi di antaranya adalah:
  • Atmosfer melindungi penghuni bumi dari radiasi gelombang pendek matahari yang sangat kuat. Jika tak ada atmosfer maka manusia, tumbuhan dan hewan akan menjadi debu berserakan.
  • Banyak gejala atmosfer yang menarik dan perlu dikaji, misalnya terjadinya awan dan hujan, badai guruh, badai tropis, perubahan iklim dan sebagainya.
  • Atmosfer sebagai bahan alam yang perlu dieksplorasi dan dieksploitasi, misalnya teknologi hujan buatan, memanfaatkan energi angin dan sebagainya.
  • Atmosfer sebagai media transportasi udara yang peka terhadap cuaca. Awan cumulonimbus (cb) merupakan jalan maut bagi dunia penerbangan harus dihindari.
  • Atmosfer sebagai tempat pembuangan zat pencemar diantaranya zat tersebut ada yang beracun dan berbahaya bagi manusia.

Atmosfer tropis mencakup daerah antara 23,5º U (tropis Cancer) dan 23,5º S (tropis Capricorn). Ahli meteorologi sering memakai batas lain untuk mendefiniskan atmosfer tropis dengan memakai sumbu sel tekanan tinggi subtropis yaitu batas sirkulasi atmosfer yang didominasi oleh angin timuran di tropis dan angin baratan di subtropis. Batas dari atmosfer tropis tropis adalah lintang 30º U dan 30º S yang disebut "lintang kuda" (horse latitude). Atmosfer ekuatorial dapat didefinisikan sebagai atmosfer yang dibatasi oleh lintang 10º U dan 10º S. Jadi atmosfer di atas wilayah Indonesia dapat dikatakan sebagai "atmosfer ekuatorial".

Komposisi Atmosfer

Tanpa atmosfer, manusia, hewan dan tumbuh-tumbuhan akan mati. Atmosfer bertindak sebagai pelindung kehidupan bumi dari radiasi matahari yang kuat pada siang hari dan mencegah hilangnya panas ke ruang angkasa pada malam hari. Atmosfer menyebabkan hambatan benda-benda yang bergerak melaluinya sehingga sebagian meteor yang melalui atmosfer akan menjadi hancur sebelum mencapai permukaan bumi. Atmosfer bersifat dapat dimampatkan (kompresibel) sehingga lapisan atmosfer bawah lebih padat daripada lapisan di atasnya, akibatnya tekanan udara berkurang sesuai dengan ketinggian. Massa total atmosfer sekitar 56 x 1014 ton, setengah dari massanya kira-kira terletak dibawah 6.000 m dan lebih dari 99% terletak di dalam lapisan 35.000 m dari permukaan bumi.

Lapisan atmosfer merupakan campuran dari gas yang tidak tampak dan tidak berwarna. Empat gas, nitrogen, oksigen, argon dan karbondioksida meliputi hampir seratus persen dari volume udara kering, lihat tabel 1. Gas lain yang stabil adalah neon, helium, metana, kripton, hidrogen, xenon dan yang kurang stabil termasuk ozon dan radon juga terdapat di atmosfer dalam jumlah yang sangat kecil.

Selain udara kering, lapisan atmosfer mengandung air dalam ketiga fasanya dan aerosol atmosfer.

Oleh karena itu, udara kering yang murni di alam tidak pernah ditemui karena 2 alasan, yakni adanya uap air di udara yang jumlahnya berubah-ubah dan selalu ada injeksi zat ke dalam udara, misalnya asap dan partikel debu. Udara seperti ini disebut udara alam.

Tabel 1. Gas utama dalam udara kering

Gas atmosfer yang penting dalam proses cuaca adalah uap air (H2O) karena dapat berubah fasa menjadi fasa cair dan padat, karbondioksida (CO2) karena bertindak sebagai gas rumah kaca dan ozon (O3) karena dapat menyerap radiasi ultraviolet matahari berenergi tinggi yang sangat berbahaya bagi tubuh manusia.

Oksigen (O2) sangat penting bagi kehidupan, yaitu untuk mengubah zat makanan menjadi energi hidup. Oksigen dapat bergabung dengan unsur kimia lain yang dibutuhkan untuk pembakaran.

Karbondioksida (CO2) dihasilkan dari pembakaran bahan bakar, pernafasan manusia dan hewan, kemudian dibutuhkan oleh tanaman. Karbon dioksida menyebabkan efek rumah kaca (greenhouse) transparan terhadap radiasi gelombang pendek dan menyerap radiasi gelombang panjang. Kenaikan konsentrasi CO2 di dalam atmosfer akan menyebabkan kenaikan suhu permukaan bumi dan menimbulkan pemanasan global. Sejak revolusi industri, konsentrasi CO2 terus naik yang antara lain disebabkan kenaikan pemakaian bahan bakar karbon dan hidrokarbon.

Nitrogen (N2) terdapat di udara dalam jumlah yang paling banyak yaitu, meliputi 78 bagian. Nitrogen tidak langsung bergabung dengan unsur lain, tetapi pada hakikatnya unsur ini penting karena bagian dari senyawa organik.

Neon (Ne), argon (Ar), xenon (Xe) dan krypton (Kr) disebut gas mulia, karena tidak mudah bergabung dengan unsur lain. Meskipun gas ini kurang penting di atmosfer, namun neon biasanya dipakai dalam iklan dan argon dipakai untuk bola lampu cahaya listrik.

Helium (He) dan hidrogen (H2) sangat jarang di udara kecuali pada paras yang tinggi. Gas ini adalah yang paling ringan dan sering dipakai untuk mengisi balon meteorologi.

Ozon (O3) adalah gas yang paling aktif dan merupakan bentuk lain dari oksigen. Gas ini terdapat terutama pada ketinggian antara 20 dan 30 km di atas permukaan laut (dpl). Ozon dapat menyerap radiasi ultra violet yang mempunyai energi besar dan berbahaya bagi tubuh manusia.

Uap air (H2O) sangat penting dalam proses cuaca atau iklim karena dapat berubah fasa (wujud) menjadi fase cair atau padat melalui kondensasi dan deposisi. Perubahan fase air yang mungkin dapat dilukiskan pada gambar 1. Uap air terdapat di atmosfer sebagai hasil penguapan dari laut, danau, kolam, sungai dan transpirasi tanaman.

Dari waktu tinggal di atmosfer , maka unsur-unsur udara dapat diklasifikasikan menjadi 3 golongan:

  1. Gas permanen dengan waktu tinggal sangat lama, misalnya waktu tinggal He = 2 juta tahun.
  2. Gas semi permanen dengan waktu tinggal beberapa bulan sampai tahun misal: CO2 = 0,35 tahun dan CH4 = 3 tahun.
  3. Gas variabel dengan waktu tinggal dari beberapa hari sampai minggu. Unsur-unsur ini adalah gas aktif secara kimia. Siklusnya berkaitan dengan siklus air (cuaca),misalnya waktu tinggal uap air berorde 10 hari.
Sampai pada ketinggian lebih dari 60 km, proporsi gas relatif masih tetap, kecuali fasa gas air (uap air). Sekitar 99% didominasi oleh gas nitrogen dan oksigen, dan yang paling banyak jumlahnya di atmosfer adalah nitrogen. Proporsi gas atmosfer berubah jika udara ditinjau bersama dengan komposisi uap airnya. Secara praktis, atmosfer dapat berada pada tempat yang langka uap air (kebasahan) dapat mencapai 4%. Meskipun berat molekuler uap air lebih kecil daripada berat molekuler beberapa gas lain, namun uap air ini berada dalam ketebalan beberapa kilometer atmosfer paling bawah. Hal ini dapat dimengerti bila disadari bahwa sumber uap air atmosferik secara langsung adalah lautan yang mencakup 70% luas permukaan bumi dan bahwa suhu udara di dalam troposfer sangat dingin sehingga air tak dapat mempertahankan wujudnya dalam bentuk gas. Air dalam atmosfer dapat berada dalam ketiga wujud (fasa). Perubahan fasa cair (air) menjadi gas (uap air) disebut penguapan (evaporasi) dan sebaliknya disebut pengembunan (kondensasi). Perubahan fasa cair menjadi fasa padat (es) disebut pembekuan dan sebaliknya disebut pencairan. Perubahan fasa es menjadi fasa uap disebut sumblimasi dan sebaliknya disebut deposisi (Gambar 1).

Gambar 1. Perubahan fasa air

Atmosfer selalu dikotori oleh debu. Debu ialah istilah yang dipakai untuk benda yang sangat kecil sehingga sebagian tidak nampak kecuali dengan mikroskop. Di pegunungan jumlah debu hanya beberapa ratus partikel tiap cm3, tetapi di kota besar, daerah industri dan daerah kering jumlah debu dapat mencapai 5 juta tiap cm3. Konsentrasi debu pada umumnya berkurang dengan bertambahnya ketinggian, meskipun debu meteorik dapat dijumpai pada lapisan atmosfer atas. Partikel debu yang bersifat higroskopis akan bertindak sebagai inti kondensasi. Debu higroskopis yang penting adalah partikel garam, asap batu bara atau arang. Kabas (smog) singkatan dari kabut dan asap (smoke and fog) adalah kabut tebal yang sering dijumpai di daerah industri yang lembap. Debu dapat menyerap, memantulkan dan menghamburkan radiasi yang datang. debu atmosferik dapat tersapu turun ke permukaan bumi oleh curah hujan, tetapi kemudian atmosfer dapat terisi partikel debu kembali.

Atmosfer juga mengandung jenis bahan yang bukan bagian dari komposisi gas. Beberapa jenis dari bahan ini adalah partikel garam, partikel debu dan tetes air. Bila uap air yaitu bagian dari udara natural (alam) berubah menjadi cair atau padat (partikel air dan es) maka partikel-partikel ini menjadi benda asing dalam atmosfer,dan menyebabkan awan, kabut, hujan, salju, embun atau batu es (hailstone). Perubahan wujud (fasa) uap air di udara sangat penting dalam menentukan kondisi cuaca.

Struktur Vertikal Atmosfer

Jika suhu dipakai sebagai dasar pembagian atmosfer, maka diperoleh lapisan troposfer, stratosfer, mesosfer dan termosfer (Gambar 2). Lapisan troposfer dan stratosfer dipisahkan dipisahkan oleh lapisan tropopause. Lapisan stratosfer dan mesosfer dibatasi oleh lapisan mesopause dan puncak termosfer disebut termopause.


Gambar 2. Pembagian lapisan atmosfer berdasarkan profil suhu vertikal. Garis titik-titik menunjukkan puncak masing-masing lapisan


Perubahan suhu udara di atmosfer secara vertikal (menurut ketinggian) berbeda-beda yang dapat dikelompokkan menjadi tiga hal. Perubahan suhu (dT) terhadap ketinggian (dz) dinyatakan oleh dT/dz.

1) dT/dz > 0 suhu naik, dengan bertambahnya ketinggian. Hal ini disebut inversi suhu.

2) dT/dz = 0 suhu tetap walaupun ketinggian berubah. Hal ini disebut isotermal.

3) dT/dz < style="font-style: italic;">lapse rate.

Rincian tiap lapisan atmosfer adalah sebagai berikut :

1. Troposfer

Secara harafiah troposfer (tropo: berubah, dan sphaira: bulatan atau lapisan) adalah lapisan yang berubah-ubah. Gejala cuaca, misalnya awan, hujan, badai guruh dan lain sebagainya terjadi pada lapisan troposfer.

Beberapa ciri khas dari lapisan terbawah atmosfer ini diantaranya adalah :

  • Terdapat pada ketinggian mulai dari permukaan laut hingga ketinggian 8 km di daerah kutub dan 16 km di ekuator. Rata-rata ketinggian puncak troposfer di seluruh dunia adalah 12 km.
  • Satu-satunya lapisan atmosfer yang mengandung air (air, uap maupun es) dan berlangsung evaporasi dan kondensasi.
  • Ruang terjadinya sirkulasi dan turbulensi seluruh bahan atmosfer sehingga menjadi satu-satunya lapisan yang mengalami pembentukan dan perubahan cuaca seperti: angin, awan, presipitasi, badai, kilat dan guntur.
  • Kecepatan angin bertambah dengan naiknya ketinggian dan di troposfer ini pemindahan energi berlangsung. Radiasi surya menyebabkan pemanasan permukaan bumi yang selanjutnya panas tersebut diserap oleh air untuk berubah menjadi uap. Oleh proses evaporasi, energi panas diangkat oleh uap ke lapisan atas yang lebih tinggi berupa panas laten. Setelah terjadi pendinginan akhirnya berlangsung proses kondensasi, uap air berubah menjadi titik-titik air pembentuk awan, sedangkan panas latennya dilepas memasuki atmosfer dan menaikkkan suhunya. Troposfer sangat sedikit menyerap radiasi matahari, sebaliknya permukaan bumi banyak menyerap panas pada troposfer melalui konduksi, konveksi dan panas laten kondensasi atau sublimasi yang dilepaskan ketika uap air berubah wujud menjadi tetes air atau kristal es.
  • Pada lapisan ini suhu udara turun dengan bertambahnya ketinggian (dT/dz <0).
  • Pada atmosfer normal, suhu troposfer berubah dari 15 ºC pada permukaan laut menjadi -60 ºC di puncak atmosfer. Tekanan dan kerapatan udara di permukaan laut masing-masing adalah 1013,2 mb dan 1,23 kg/m 3

Gejala lapse rate berhenti pada ketinggian 8 km di atas kutub dan sekitar 16 km di atas ekuator. Ketinggian itu disebut tropopause, yakni lapisan ketinggian atmosfer dengan dT/dz = 0. Pada lapisan ini turbulensi udara tidak terjadi.

2. Stratosfer

Stratosfer (strata: lapisan, dan sphaira: bulatan) artinya bulatan (lapisan) yang berlapis, karena pada lapisan stratosfer terdapat juga lapisan ozon (ozonosfer). Stratosfer terletak di atas troposfer pada ketinggian 10 dan 60 km. Karena tropopause lebih tinggi di ekuator daripada di kutub, maka stratosfer lebih tipis di ekuator daripada di kutub. Di ekuator, tropopause mempunyai ketinggian 18 km dengan temperatur sekitar -80 ºC, sedangkan di kutub tropopause hanya mencapai ketinggian 6 km dengan temperatur -40 ºC.

Stratosfer ditandai oleh susut temperatur negatif atau kenaikan temperatur terhadap ketinggian (inversi suhu), disebabkan ozonosfer yang menyerap radiasi ultra violet berenergi tinggi dari matahari. Pertukaran antara gas troposfer dan stratosfer sangat kecil karena stratosfer adalah lapisan yang stabil/ inversi suhu. Lapisan ini tidak mengalami turbulensi atau sirkulasi.

Stratosfer merupakan lapisan atmosfer utama yang mengandung gas ozon. Proses pembentukan dan penguraian mencapai kesetimbangan hingga membentuk lapisan ozon.

3. Mesosfer

Mesosfer (meso: tengah, dan sphaira: bulatan) artinya lapisan gas bagian tengah yang meyelubungi bulatan bumi. Mesosfer terletak di atas stratopause dari ketinggian 60 - 85 km, dengan ditandai susut temperatur positif (perubahan suhu terhadap ketinggian (dT/dz) adalah lapse rate) dengan gradien temperatur berorde 0,4 ºC per 100 meter. Puncak mesosfer dibatasi oleh mesopause dengan perubahan suhu terhadap ketinggian mulai bersifat isotermal dan permukaan yang mempunyai temperatur paling rendah di atmosfer, sekitar -100 ºC. Lapisan ini tidak mengalami turbulensi/sirkulasi udara dan merupakan daerah penguraian O2 menjadi atom O. Lapisan mesosfer tumpang tindih (overlaps) bersamaan dengan ionosfer bawah.

4. Termosfer

Termosfer (termo: panas, dan sphaira: bulatan) artinya lapisan panas yang menyelubungi bulatan bumi pada ketinggian 85 km sampai 300 km. Termosfer ditandai oleh sifat susut temperatur negatif (sifat perubahan suhu terhadap ketinggian adalah inversi suhu) atau kenaikan temperatur dari -100 ºC sampai ratusan bahkan ribuan derajat. Lapisan ini berisi molekul dan atom N2, O2, N dan O. Lapisan tempat berlangsungnya proses ionisasi gas N2 dan O2, sehingga lapisan termosfer sering disebut lapisan ionosfer. Di atas ketinggian 100 km pengaruh radiasi ultraviolet dan sinar X makin kuat. Kenaikan temperatur disebabkan termosfer menyerap radiasi EUV (extreme ultravilolet). Karena semakin ke atas konsentrasi atmosfer makin kecil makin kecil maka perpindahan panas menjadi sulit, sehingga temperatur konstan. Bagian atas mesosfer disebut termopause yang meluas dari ketinggian 300 km sampai pada rumbai-rumbai bumi (fringe of the earth) sekitar 1000 km.. Termopause adalah paras transisi ke profil temperatur yang mendekati isotermal atau temperatur konstan. Termosfer dan termopause meluas ke atas sampai berbaur dengan atmosfer matahari ribuan kilometer di atas permukaan bumi dan dalam perluasannya sebagian gas ini terionisasi. Temperatur termopause adalah konstan terhadap ketinggian tapi bervariasi terhadap aktivitas matahari.

Dampak aktivitas manusia terhadap atmosfer dan akibatnya pada kesehatan manusia dan lingkungan sangat signifikan. Karbondioksida (CO2) sebagai rumah kaca mempunyai efek pemanasan permukaan bumi. Karbonmonoksida (CO) secara kimia adalah gas aktif dan sangat beracun. Gas ini sangat berbahaya bagi kesehatan jika kadar CO melebihi 100 ppm = 0,01%. Belerang dioksida (SO2) dan asam belerang (H2SO4) lebih beracun lagi. Jika asam belerang terhirup oleh pernafasan maka akan terjadi kerusakan jaringan secara permanen. Gas buang industri hidrogen sulfida (H2S) dalam dosis tinggi sangat mematikan. Hidrogen fluorida (HF) yang dihasilkan oleh proses industri adalah salah satu bahan kimia yang sangat korosif. Aerosol atmosferik akibat aktivitas manusia maupun dihasilkan secara alamiah mempunyai dampak pendinginan terhadap atmosfer jika partikel ini memantulkan kembali radiasi, atau mempunyai dampak pemanasan jika partikel ini menyerap radiasi matahari. Reduksi kadar ozon stratosferik atau penipisan ozonosfer dapat menyebabkan kanker kulit, meningkatkan penyakit katarak, menurunkan sistem kekebalan tubuh, penurunan jumlah plankton di laut dan penurunan hasil pertanian.

Sumber :

Anonim. 1991. Kapita Selekta dalam Agrometeorologi. Direktorat Jenderal Pendidikan Tinggi Departemen Pendidikan dan Kebudayaan. Jakarta.

Bayong Tjasyono. 2004. Klimatologi. Penerbit ITB. Bandung.

Bayong Tjasyono. 2007. Meteorologi Indonesia 1 Karakteristik & Sirkulasi Atmosfer. Badan Meteorologi dan Geofisika. Jakarta.

Handoko. 1995. Klimatologi Dasar. Pustaka Jaya. Bogor.